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@ Pivot rules and projections of associahedra

© Cyclic associahedra and intrinsic degree

© Realization sets and universal arborescences
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Pivot rules and projections of associahedra
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Shadow vertex rule

Optimization in dimension 2:

A. Benjes, G. Poullot, R. Sanyal Cyclic Associahedra and intrinsic degrees



Shadow vertex rule

Optimization in dimension 2:

Vo

Vopt

A. Benjes, G. Poullot, R. Sanyal Cyclic Associahedra and intrinsic degrees



Shadow vertex rule

Optimization in dimension 2:

Vo

Vopt

A. Benjes, G. Poullot, R. Sanyal Cyclic Associahedra and intrinsic degrees



Shadow vertex rule

Optimization in dimension 2:

Vo
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Shadow vertex rule

Optimization in dimension 2: EASY !

Vo

Vopt

(o}

By convention, we always choose the upper path when optimizing.
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Shadow vertex rule

Optimization in higher dimension: make it 2-dimensional !
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Shadow vertex rule

Optimization in higher dimension: make it 2-dimensional !
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Vopt
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Shadow vertex rule

Optimization in higher dimension: make it 2-dimensional !

V,'+1?

Vopt
Vo

\
r

c
Shadow vertex rule (i.e. "take the neighbor with the best slope”):

(w,u—v)

A®(v) = argmax {(cu—v>

; u improving neighbor of v}
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Shadow vertex rule

Optimization in higher dimension: make it 2-dimensional !

Vopt
Vo

\
r

c
Shadow vertex rule (i.e. "take the neighbor with the best slope”):

(w,u—v)
(c,u—v)

Applying the rule at every vertex gives a monotone arborescence.

A% (v) = argmax{ ; u improving neighbor of v}
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Monotone path polytope and pivot rule polytope

Let P € R? be a polytope.
Shadow vertex rule: A“(v) = argmax { 2‘;5::3 ; u impr. neig. of v}.

Coherent monotone path: A monotone path that can be obtained
via the shadow vertex rule.
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Monotone path polytope and pivot rule polytope

Let P € R? be a polytope.
Shadow vertex rule: A¥(v) = argmax{

<<c;5::>> ; u impr. neig. of v}.

Coherent monotone path: A monotone path that can be obtained

via the shadow vertex rule.

Monotone path polytope ¥.(P) [BS92]: Fiber polytope of P ™+ Q
with Q a segment. (Can be seen as a Minkowski sum of sections of P.)
The vertices of (P) are all coherent monotone paths.
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Monotone path polytope and pivot rule polytope

Let P € R? be a polytope.
Shadow vertex rule: A¥(v) = argmax{

<<c;5::>> ; u impr. neig. of v}.

Coherent monotone path: A monotone path that can be obtained

via the shadow vertex rule.

Monotone path polytope ¥.(P) [BS92]: Fiber polytope of P ™+ Q
with Q a segment. (Can be seen as a Minkowski sum of sections of P.)
The vertices of (P) are all coherent monotone paths.

Coherent arborescence: An arborescence that can be obtained via
the shadow vertex rule.

Pivot rule polytope M (P): Polytope which vertices are all coherent
arborescences.
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Monotone path polytope and pivot rule polytope

Let P € R? be a polytope.
Shadow vertex rule: A¥(v) = argmax{

2‘;5::3 ;u impr. neig. of v}.
Coherent monotone path: A monotone path that can be obtained
via the shadow vertex rule.

Monotone path polytope ¥.(P) [BS92]: Fiber polytope of P ™+ Q
with Q a segment. (Can be seen as a Minkowski sum of sections of P.)
The vertices of (P) are all coherent monotone paths.

Coherent arborescence: An arborescence that can be obtained via
the shadow vertex rule.

Pivot rule polytope M (P): Polytope which vertices are all coherent
arborescences. (Can also be seen as a Minkowski sum of "sections™.)

M, (P) = conv Z m(A(v) — v); A coherent arbo. of P

VF#Vopt
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Case of the d-simplex
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Case of the d-simplex

Pivot rule fan 7. (P):

w ~ W iff A = AV

This gives a polytopal

fan [BDLLS22] (see above).
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Case of the d-simplex

Pivot rule fan m.(P):
fm W~ W iff AY =AY
This gives a polytopal
fan [BDLLS22] (see above).
m The pivot rule fan refines the
monotone path fan.
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Case of the d-simplex

Pivot rule fan 7. (P):

w ~ W iff A = AV

This gives a polytopal

fan [BDLLS22] (see above).
The pivot rule fan refines the
monotone path fan.

For any d-simplex Ag41, any 7

ZW(Ad—i-l) = Cubed_l
MNr(Ag+1) = Assog_1
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Case of the d-simplex

Pivot rule fan 7. (P):

w ~ W iff A = AV

This gives a polytopal

fan [BDLLS22] (see above).
The pivot rule fan refines the
monotone path fan.

For any d-simplex Ag41, any 7

zw(Ad—i-l) = Cubed_l
MNr(Ag+1) = Assog_1

zﬂ—(AdJrl) [8592]3

A monotone path = (vp, part of the vertices, vopt).
Choosing a monotone path = Choosing a part of the
(d — 1)-remaining vertices.

Exercise: Prove all such paths are coherent.
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Case of the d-simplex

Mr(Ag+1) [BDLLSon]:
Project a simplex in dimension 2: any set of points.
Do the shadow vertex rule.
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Case of the d-simplex

Mr(Ag+1) [BDLLSon]:
Project a simplex in dimension 2: any set of points.
Do the shadow vertex rule.
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Case of the d-simplex

Mr(Ag+1) [BDLLSon]:

Project a simplex in dimension 2: any set of points.

Do the shadow vertex rule.

Hint: The graph of a simplex is complete, think about the slopes!
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Case of the d-simplex

Mr(Ag+1) [BDLLSon]:

Project a simplex in dimension 2: any set of points.

Do the shadow vertex rule.

Hint: The graph of a simplex is complete, think about the slopes!

Lemma (Non-crossing)

For a polytope which graph is complete, all coherent arborescences
are non-crossing.

A. Benjes, G. Poullot, R. Sanyal Cyclic Associahedra and intrinsic degrees



Case of the d-simplex

Mr(Ag+1) [BDLLSon]:

Project a simplex in dimension 2: any set of points.

Do the shadow vertex rule.

Hint: The graph of a simplex is complete, think about the slopes!

Lemma (Non-crossing)

For a polytope which graph is complete, all coherent arborescences
are non-crossing.

Exercise: Prove all non-crossing arborescences are coherent for the
simplex.
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Projection and pivot rule polytope

When P % Q, then ¥(Q) = p(Zrop(P)).
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Projection and pivot rule polytope

When P % Q, then ¥(Q) = p(Zrop(P)).
Fails for pivot rule polytope in general.
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Projection and pivot rule polytope

When P % Q, then ¥(Q) = p(Zrop(P)).
Fails for pivot rule polytope in general.

Theorem (Projection and Pivot rule polytopes)

When GQ = Gp, then nw(Q) = P(HWOp(P))'
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Projection and pivot rule polytope

When P % Q, then ¥(Q) = p(Zrop(P)).
Fails for pivot rule polytope in general.

Theorem (Projection and Pivot rule polytopes)

When GQ = Gp, then nw(Q) = P(HWOp(P))'

Corollary (Projections of associahedra)

Pivot rule polytope of 2-neighborly polytopes are projections of
associahedra.

Let's study the pivot rule polytope of cyclic polytopes!
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Cyclic associahedra and intrinsic degree
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Cylcic associahedra

Fix a dimension d and an integer n > d + 1.

Cyclic polytope Cycy(t) = conv{v4(t1), ..., Vd(tn)} where

vy 1t (t 12, ).

Its combinatorics does not depend from the choice of ti, ..., t,.
But its exact geometry does.
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Fix a dimension d and an integer n > d + 1.

Cyclic polytope Cycy(t) = conv{v4(t1), ..., Vd(tn)} where

vy 1t (t 12, ).

Its combinatorics does not depend from the choice of ti, ..., t,.
But its exact geometry does.

When n = d + 1, then Cycy(t) is a simplex.
When d 2 4, GCycd(t) = Kn.
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Cylcic associahedra

Fix a dimension d and an integer n > d + 1.

Cyclic polytope Cycy(t) = conv{v4(t1), ..., Vd(tn)} where

vy 1t (t 12, ).

Its combinatorics does not depend from the choice of ti, ..., t,.
But its exact geometry does.

When n = d + 1, then Cycy(t) is a simplex.
When d 2 4, GCycd(t) = Kn.

Cyclic associahedron M¢(t) = M, (Cyc,(t)) with 7 = (... |e1) the
projection on the first coordinate.
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Cylcic associahedra

Fix a dimension d and an integer n > d + 1.

Cyclic polytope Cycy(t) = conv{v4(t1), ..., Vd(tn)} where

vy 1t (t 12, ).

Its combinatorics does not depend from the choice of ti, ..., t,.
But its exact geometry does.

When n = d + 1, then Cycy(t) is a simplex.
When d 2 4, GCycd(t) = Kn.

Cyclic associahedron M¢(t) = M, (Cyc,(t)) with 7 = (... |e1) the
projection on the first coordinate.

Previous corollary: M¢(t) is a (generic) projection of Assoy_1 (for
almost all t). = Faces of N¢(t) are products of associahedra.
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Cyclic associahedra (Monotone path polytope)

Fix a dimension d and an integer n > d + 1.
Cyclic polytope Cyc,(t) = conv{~4(t1),...,74(tn)} where
Va1t (L2, ).

Monotone path polytope have been computed in [ADLRS00]:
Ve, E:(Cycy(t)) ~ Zeycic(n—2,d —1)

Cyclic zonotope Zycjic(n, d): zonotope generated by any n distinct
vectors U%'Yd(ul), oy uin'yd(u,,) (does not depend from uy, ..., up).
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Cyclic associahedra

Vertices of M¢(t) correspond to some non-crossing arborescences.
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Cyclic associahedra

Vertices of MY (t) correspond to some non-crossing arborescences.

Project Cycy(t) in plane (m,w): vertices map to (t;, (w [v4(ti)))-

h’d tl Z WJ
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Cyclic associahedra

Vertices of MY(t) correspond to some non-crossing arborescences.

Project Cycy(t) in plane (m,w): vertices map to (t;, P(t;)) for any

P e Ry [X ]
b /7\ m
/ tats a4 tste U7
Immediate leaves of A are L(A4) = {1,6},
and 6 is the unique interior immediate leaf.
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Cyclic associahedra

Vertices of MY(t) correspond to some non-crossing arborescences.

Project Cycy(t) in plane (m,w): vertices map to (t;, P(t;)) for any

P e Ry [X ]
b /7\ m\
/ tats  ty tsle 17
Immediate leaves of A are L(A4) = {1,6},
and 6 is the unique interior immediate leaf.

Fix a non-crossing arborescence A: can it be captured by some
polynomial of degree < d?
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Intrinsic degree

/ tats tyg tste 17
Immediate leaves of A are L(A) = {1,6},
and 6 is the unique interior immediate leaf.

Degree pu(A, t) = min{deg P : A is captured by P on t}
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Intrinsic degree

/ tats tyg tste 17
Immediate leaves of A are L(A) = {1,6},
and 6 is the unique interior immediate leaf.

Degree pu(A, t) = min{deg P : A is captured by P on t}
Intrinsic degree p(A) = ming (A, t)
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Intrinsic degree

f.% S

/ tyts by b5t b7 ts
Immediate leaves of A are L(A4) = {1,6},
and 6 is the unique interior immediate leaf.

Degree pu(A, t) = min{deg P : A is captured by P on t}
Intrinsic degree p(A) = ming (A, t)
Immediate leaf i: leaf with A(i) =i+ 1.

Theorem (Intrinsic degree)

wu(A) = 2x (interior imm. leaves) + 1x (exterior imm. leaves) +1
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Intrinsic degree (proof)

VAl

/ ta t3 ta t5t6 7
Immediate leaves of A are L(A4) = {1,6},

and 6 is the unique interior immediate leaf.

Proof that p(A) > 2|L°(A)| + [L(A)| + 1

A. Benjes, G. Poullot, R. Sanyal Cyclic Associahedra and intrinsic degrees



Intrinsic degree (proof)

VT

/ ta t3 ta t5t6 7
Immediate leaves of A are L(A4) = {1,6},

and 6 is the unique interior immediate leaf.

Proof that p(A) > 2|L°(A)| + [L(A)| + 1

There exist two kinds of triangles: convex V and concave A.
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Intrinsic degree (proof)

f,ﬁ\ A

/ tats  ty tsle t7
Immediate leaves of A are L(A4) = {1,6},

and 6 is the unique interior immediate leaf.

Proof that p(A) > 2|L°(A)| + [L(A)| + 1

There exist two kinds of triangles: convex V and concave A.

Take i € L(A), then i — 1,/,i + 1 gives a convex triangle V.
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Intrinsic degree (proof)

/ to t3 ty tste t7 tg
Immediate leaves of A are L(A4) = {1,6},

and 6 is the unique interior immediate leaf.

Proof that p(A) > 2|L°(A)| + [L(A)| + 1

There exist two kinds of triangles: convex V and concave A.
Take i € L(A), then i — 1,/,i + 1 gives a convex triangle V.
But if A(j) =/ +1, then j,j+ 1,j+ 2 gives a concave triangle A.
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Intrinsic degree (proof)

/ tots  ta tste tr Is
Immediate leaves of A are L(A4) = {1,6},

and 6 is the unique interior immediate leaf.

Proof that p(A) > 2|L°(A)| + [L(A)| + 1

There exist two kinds of triangles: convex V and concave A.
Take i € L(A), then i — 1,/,i + 1 gives a convex triangle V.
But if A(j) =/ +1, then j,j+ 1,j+ 2 gives a concave triangle A.

Convex and concave triangle alternate, forcing P” to change sign.
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Intrinsic degree (proof)

/ tots  ta tste tr Is
Immediate leaves of A are L(A4) = {1,6},

and 6 is the unique interior immediate leaf.

Proof that u(A) > 2|L°(A)| + [L*(A)| + 1:

There exist two kinds of triangles: convex V and concave A.
Take i € L(A), then i — 1,/,i + 1 gives a convex triangle V.
But if A(j) =/ +1, then j,j+ 1,j+ 2 gives a concave triangle A.
Convex and concave triangle alternate, forcing P” to change sign.

The count of change of signs of P” gives a minimal degree for P.
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Intrinsic degree (proof)

/ t7'+1/

i [t 7/ / tn

L] L] L] L]
1 2 3 4 5 6 7 8 9 10
D(A")-clip

Proof that ;i(A) < 2|L°(A)| + |[L*(A)| + 1:
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Intrinsic degree (proof)

/ t7'+1/ X

i [t 7/ / tn

—e
N
we
Ny S
ot
(=2

7 8 9 10

D(A")-clip

Proof that ;i(A) < 2|L°(A)| + |[L*(A)| + 1:

Proof by induction.
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Intrinsic degree (proof)

/ t7'+1/ X

] /¢, / / tn

—e
N}
we
Ny S

D(A")-clip

Proof that ;i(A) < 2|L°(A)| + |[L*(A)| + 1:

Proof by induction.
Find r = min{i ; A(i) = n}. Split A along the arc (r, n).
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Intrinsic degree (proof)

/ t7'+1/

] /¢, / / tn

D(A")-clip

Proof that ;i(A) < 2|L°(A)| + |[L*(A)| + 1:

Proof by induction.
Find r = min{i ; A(i) = n}. Split A along the arc (r, n).

Take the Chebychev polynomial of the right degree.
Put A’ on the left clip and A” on the right clip.
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Intrinsic degree (proof)

/ t7'+1/ X

] /¢, / / tn

D(A")-clip

Proof that ;i(A) < 2|L°(A)| + |[L*(A)| + 1:

Proof by induction.
Find r = min{i ; A(i) = n}. Split A along the arc (r, n).

Take the Chebychev polynomial of the right degree.
Put A’ on the left clip and A” on the right clip.

The claimed degree is made so clips fit together perfectly.
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Classification of arborescences

A with p(A) = 2: exactly 1 exterior imm. leaf.
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Classification of arborescences

A with p(A) = 2: exactly 1 exterior imm. leaf.

A. Benjes, G. Poullot, R. Sanyal Cyclic Associahedra and intrinsic degrees



Classification of arborescences

A with p(A) = 2: exactly 1 exterior imm. leaf.
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Classification of arborescences

A with p(A) = 2: exactly 1 exterior imm. leaf.

For all t, pu(A, t) = u(A) = 2 for both quadratic arborescences A.
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Classification of arborescences

A with p(A) = 3: 1 interior imm. leaf OR 2 exterior im. leaves.
272 4+ n — 5 such arborescences. In general: u(A,t) > u(A).
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Classification of arborescences

A with p(A) = 3: 1 interior imm. leaf OR 2 exterior im. leaves.
2"=2 4 n — 5 such arborescences. In general: u(A, t) > pu(A).
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S
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Classification of arborescences

A with p(A) = 3: 1 interior imm. leaf OR 2 exterior im. leaves.
2"=2 4 n — 5 such arborescences. In general: u(A, t) > pu(A).

(T7\ (7T

~TA

A A o

2228Y
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Classification of arborescences

A with p(A) = 3: 1 interior imm. leaf OR 2 exterior im. leaves.
272 4+ n — 5 such arborescences. In general: u(A,t) > u(A).

T T\
A 1A /73 >
- (TAL I/ //: 2
ACA \ rrrrrr
A A\ ()
VSN A\ \ (72
,,,,,,,,,,,,, A (A \/ TN\
A 1%
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Classification of arborescences
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Realization sets and universal arborescences
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Realization sets and universal arborescences

Aim: describe the vertices of M.
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Realization sets and universal arborescences

Aim: describe the vertices of M.

Realization set T3 (A) {t A'is a "vertex” of I'Id}
={t; Ais captured on t by P,deg P < d}
={t; p(At) <dj}

Order Cone O), ={t e R"; t; < --- < tp}
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Realization sets and universal arborescences

Aim: describe the vertices of M.

Realization set T3 (A) = { ; Alis a "vertex" of I'Id}
={t; Ais captured on t by P,deg P < d}
={t; p(At) <dj}

Order Cone O), ={t e R"; t; < --- < tp}
By definition (and Lagrange interpolation):

TE(A) STy (A) - C Tla(A) = 0y
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Realization sets and universal arborescences

Aim: describe the vertices of M.

Realization set T3 (A) = { ; Alis a "vertex" of I'Id}
={t; Ais captured on t by P,deg P < d}
={t; p(At) <dj}

Order Cone O), ={t e R"; t; < --- < tp}
By definition (and Lagrange interpolation):

TE(A) STy (A) - C Tla(A) = 0y

Universal arobrescence A: 7;’( A) = (O

How to describe 77 (A)?
Who are the universal arborescences?
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Realization sets and universal arborescences

Y ‘
1234567289 123456789
(2.3.8) is forward (5,6,7) is backward
(7,8,9) is not forward (3,7,8) is not backward

Forward: i — j — k with i = min{v ; v — j}.
Backward: i — k and j — k with i = max{v <j; v — k}.
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Realization sets and universal arborescences

Y ‘
1234567289 123456789
(2.3.8) is forward (5,6,7) is backward
(7,8,9) is not forward (3,7,8) is not backward

Forward: i — j — k with i = min{v ; v — j}.
Backward: i — k and j — k with i = max{v <j; v — k}.

A is captured on t by P iff:

V(i,J, k) forward,

(te — ti)(P(t;) — P(t:)) — (t; — t:)(P(t«) — P(t;)) > 0
V(a, b, c) backward,
(te — ta)(P(tp) — P(ta)) — (to — ta)(P(tc) — P(t2)) <0

Proof: Look intensively at the drawing.
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Note that:

r r r__+r
A
t—ti ti—t;
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Note that:

et t—tf mys mys
P ! J— —
t—t; t—t Zm—l—s:r—l tk ti Zm—l—s:r—l tj ti

A. Benjes, G. Poullot, R. Sanyal Cyclic Associahedra and intrinsic degrees



Note that:

tp—tf t—t] mys mys
[ | —_ —
t—t; t—t Zm—l—s:r—l tk ti Zm—l—s:r—l tj ti

= Zm—l—s:r—l(t;(n - tjm)tis
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Note that:

tp—tf t—t] mys mys
[ | —_ —
t—t; t—t Zm—l—s:r—l tk ti Zm—l—s:r—l tj ti

= Zlm—l-s:r—l(t;(n - tjm)t§
— P
T ht Zp-{-q—i—s:r—l tk tj tis
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Note that:

t—t] 5t mys mys
[ | —_ —
t—t; ti—t; - Zm—l—s:r—l tk ti Zm—i—s:r—l tj ti

= Zlm—l-s:r—l(t;(n - tjm)t§
_ P
= tog ptars=r1 LG G

Complete symmetric homogeneous polynomial
hf(X7 Yv Z) = Zp+q++s:€ XPYadzs
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Note that:

et -t mys mys
P ! J— —
t—t; ti—t; - Zm—l—s:r—l tk ti Zm—i—s:r—l tj ti

= Zlm—l-s:r—l(t;(n - tjm)tis
_ P.q
= tog ptars=r1 LG G

Complete symmetric homogeneous polynomial
hf(X7 Yv Z) = Zp+q++s:€ XPYadzs

A is captured on t by P = >, w; X' iff:

V(i,j, k) forward, (h.—o(ti, tj, tx) lw) >0
V(a, b, c) backward,  (—h._o(tas, tp, tc)|w) >0
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A is captured on t by P =Y, w; X' iff:

V(i,Jj, k) forward, (h._o(ti, tj, tx) lw) >0
V(a, b, c) backward,  (—h._o(ta, tp, tc)|lw) >0

Farkas' lemma: this system has a solution iff the matrix with rows
+h._»(t) has no positive vector in its kernel.
Note that: h_;(t) =0 and ho(t) = 1.
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A is captured on t by P =Y, w; X' iff:

V(i,Jj, k) forward, (h._o(ti, tj, tx) lw) >0
V(a, b, c) backward,  (—h._o(ta, tp, tc)|lw) >0

Farkas' lemma: this system has a solution iff the matrix with rows
+h._»(t) has no positive vector in its kernel.
Note that: h_;(t) =0 and ho(t) = 1.

Forward and backward polytopes
P (A, t) = conv{(he(ti, tj, tk))1<pey_o i (irj, k) forward}
Pb (A, t) = conv{(he(ta, tp, tc))1<e<d_2:(a; b, ) backward}

Theorem (Caracterisation of 77 (A))

A captured on t by some P, deg P < d iff Pt (A, t)NP5 (A, t) = 0.
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Farkas' trick

95 P{(At)
90
85
; 80
95 PI(A,t) i
90 70
85 65

80 60 PY(A 1)

75 55
70 50
65 45
60 40
55 35

Ph(At)  Pi(A¢) PL(A, ) PL(A,t)

9 10 1 12 7 8 9 10 11 12
A: J'//\f\\‘ with t = (1,2,3,4,5) A: ////7/\\/\
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Farkas' trick

o5 Pi(A,t)
90
85
80
75
70
95 65
90 60
85 55
80 50
75 45
70 40
65 35
60 30
55 25
50 ,
Pgs(/\.tJ‘
é 16 1‘1 12 5 (; ‘7 é é lb 1‘1 1‘2
/ \ A N\
[~ v with t = (—1,2,3,4,5) A [ A
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Carefull for d < 3, N¢ + projected associahedron (Geyc (s # Kn)-
t yeq(t)
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Carefull for d < 3, MY # projected associahedron (Geye () # Kn)-
But the pojected associahedron d < 3 appears as a projection of
I'If for d > 4,
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Carefull for d < 3, MY # projected associahedron (Geye () # Kn)-
But the pojected associahedron d < 3 appears as a projection of
N¢ for d > 4, and gives method for M2, M3 (but easier to explain).
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Carefull for d < 3, MY # projected associahedron (Geye () # Kn)-
But the pojected associahedron d < 3 appears as a projection of
N¢ for d > 4, and gives method for M2, M3 (but easier to explain).

d=2:

1 2 3 4 5 .0
Ali)=i+1

For A with 1(A) = 2, either P5 (A, t) = 0 or Pf (A, t) = 0 (either
there is no backward, or no forward)
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Carefull for d < 3, MY # projected associahedron (Geye () # Kn)-
But the pojected associahedron d < 3 appears as a projection of
N¢ for d > 4, and gives method for M2, M3 (but easier to explain).

d=2:

1 2 3 4 5 ... n 1 2 3 4 5 ... n
A(i)=i+1 A(i)=n

For A with 1(A) = 2, either P5 (A, t) = 0 or Pf (A, t) = 0 (either

there is no backward, or no forward).

Both A are universal: Vd > 2, T7(A) = O;,.
(but the right one is not a vertex of 2.)
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d=3:
F(At) = conv{t; + tj + tx ; (i,j, k) forward} C R?
Po (A t) = conv{t, + tp + tc ; (a, b, c) backward} C R!
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d=3:

Pl (A, t) = conv{t; + t; + ti ; (i, ], k) forward} C R!

Po (A t) = conv{t, + tp + tc ; (a, b, c) backward} C R!

"For which t on has P, (A, t) NP5 (A, t) = (17" easy question!
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Pl (A, t) = conv{t; + t; + ti ; (i, ], k) forward} C R!
Po (A t) = conv{t, + tp + tc ; (a, b, c) backward} C R!
"For which t on has P, (A, t) NP5 (A, t) = (17" easy question!

Minimal forward: (i,j, k) with i a leaf.
Maximal backward: (a, b, c) with b =c — 1.
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Po (A t) = conv{t, + tp + tc ; (a, b, c) backward} C R!
"For which t on has P/, (A, t) NP5 (A, t) = (?": easy question!

Minimal forward: (i,j, k) with i a leaf.
Maximal backward: (a, b, c) with b =c — 1.

Theorem (Universal cubic arborescences)

There are n+ 1 universal arborescences A with i(A) = 3 (see
picture), i.e. u(A) =3 and 73°(A) = Oy,
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Cased =3

d=3:

Pl (A, t) = conv{t; + t; + ti ; (i, ], k) forward} C R!

Po (A t) = conv{t, + tp + tc ; (a, b, c) backward} C R!

"For which t on has P, (A, t) NP5 (A, t) = (17" easy question!

Minimal forward: (i,j, k) with i a leaf.
Maximal backward: (a, b, c) with b =c — 1.

Theorem (Universal cubic arborescences)

There are n+ 1 universal arborescences A with i(A) = 3 (see
picture), i.e. u(A) =3 and 73°(A) = Oy,

Theorem ((almost) facet description of 75°(A))

For a non-universal A with p(A) = 3:
TE(A) = 00N {t; tatty+te <ti+tj+ty;
(i,j, k) min f., and (a, b, c) max b.}

.
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((A) = 2 ; universal p(A) = 3 ; non-universal p(A) =3

(7 A

(72
A N (7723 722
_ (T, (7

(A

AL A TA (T / /;3\
o (A (A
o A A (A~ /- :;X\

SN

AAAAA A
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Cased =3

N

(0,0,0,0,1) 0,1,1,1,1)

ta+tz+ta=t1+ta+1ts
(0,0,0,1,1)

02 N{t1 =0} N{ts = 1}, with the realization sets 73°(A).

A. Benjes, G. Poullot, R. Sanyal Cyclic Associahedra and intrinsic degrees



Case d = 3 (double flips)

Double flip (i,j, k) <> (a, b, ¢): flip the minimal forward (i, , k) to
a backward, and flip the maximal backward (a, b, ¢) to a forward.
Quasi-always possible to perform.

(234)<—> (1,4,5)
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Case d = 3 (double flips)

Double flip (i,j, k) <> (a, b, ¢): flip the minimal forward (i, , k) to
a backward, and flip the maximal backward (a, b, ¢) to a forward.
Quasi-always possible to perform.

(234)<—> (1,4,5)

Double flip: cross some square face in the associahedron (above).
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Case d = 3 (double flips)

Double flip (i,j, k) <> (a, b, ¢): flip the minimal forward (i, , k) to
a backward, and flip the maximal backward (a, b, ¢) to a forward.
Quasi-always possible to perform.

(234)<—> (1,4,5)

2 3 4 5

Double flip: cross some square face in the associahedron (above).
Double-flipping arrangement H,: arragement of hyperplans

{ti +tj+ tx = ta+ tp + tc} for (i, /, k) minimal forward and

(a, b, ¢) maximal backward.
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Case d = 3 (double flips)

Double flip (i,j, k) <> (a, b, ¢): flip the minimal forward (i, , k) to
a backward, and flip the maximal backward (a, b, ¢) to a forward.
Quasi-always possible to perform.

(234)<—> (1,4,5)

2 3 4 5

Double flip: cross some square face in the associahedron (above).
Double-flipping arrangement H,: arragement of hyperplans

{ti +tj+ tx = ta+ tp + tc} for (i, /, k) minimal forward and

(a, b, ¢) maximal backward.

Hn refines the subdivsion of OF induced by {73°(A)}a; u(a)=3-
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Case d = 3 (double flips)

Double-flipping arrangement H,: arragement of hyperplans
{ti+tj+tx = ta+ tp + tc} for (i,j, k) min f. and (a, b, c) max b..
Hn refines the subdivsion of Of induced by {73°(A)} a; j(4)=3-

For the vertices of the projected associahedron (d = 3):
Cross an hyperplan in H, = loose an arobrescence but gain its
double-flipped.
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Case d = 3 (double flips)

Double-flipping arrangement H,: arragement of hyperplans
{ti+tj+tx = ta+ tp + tc} for (i,j, k) min f. and (a, b, c) max b..
Hn refines the subdivsion of Of induced by {73°(A)} a; j(4)=3-

For the vertices of the projected associahedron (d = 3):
Cross an hyperplan in H, = loose an arobrescence but gain its
double-flipped.

Corollary (Number of vertices of the 3-projected associahedron)

The number of vertices of the projected associahedron for d = 3
does not depend on t, namely it is (}) — 1.
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Case d = 3 (double flips

A A

//A

(7 (T

> =
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NI

(7 (T

(7A >
A )
A

Thank you!
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